Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Nature Astronomyvolume 1, Sandal Women's Cdbc Noir Black Kayenta Outdoor Sports and Lifestyle Teva pages709–712 (2017) | Download Citation
AbstractAbstract
It is widely accepted that black holes with masses greater than a million solar masses (M⊙) lurk at the centres of massive galaxies. The origins of such ‘supermassive’ black holes (SMBHs) remain unknown1, although those of stellar-mass black holes are well understood. One possible scenario is that intermediate-mass black holes (IMBHs), which are formed by the runaway coalescence of stars in young compact star clusters2, merge at the centre of a galaxy to form a SMBH3. Although many candidates for IMBHs have been proposed, none is accepted as definitive. Recently, we discovered a peculiar molecular cloud, CO–0.40–0.22, with an extremely broad velocity width, near the centre of our Milky Way galaxy. Based on the careful analysis of gas kinematics, we concluded that a compact object with a mass of about 105M⊙ is lurking in this cloud4. Here we report the detection of a point-like continuum source as well as a compact gas clump near the centre of CO–0.40–0.22. This point-like continuum source (CO–0.40–0.22*) has a wide-band spectrum consistent with 1/500 of the Galactic SMBH (Sgr A*) in luminosity. Numerical simulations around a point-like massive object reproduce the kinematics of dense molecular gas well, which suggests that CO–0.40–0.22* is one of the most promising candidates for an intermediate-mass black hole.
Access optionsAccess options
Subscribe to Journal
Cdbc Black Lifestyle Kayenta Teva Outdoor and Women's Sandal Noir Sports Get full journal access for 1 year
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ReferencesReferences
1.
Djorgovski, S. G., Volonteri, M., Springel, V., Bromm, V. & Meylan, G. in The Eleventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (eds Kleinert, H., Jantzen R. T. & Ruffini, R.) 340–367 (World Scientific, 2008)
Portegies Zwart, S. F., Makino, J., McMillan, S. L. W. & Hut, P. Star cluster ecology. III. Runaway collisions in young compact star clusters. Astron. Astrophys.348, 117–126 (1999).
Oka, T., Mizuno, R., Miura, K. & Takekawa, S. Signature of an intermediate-mass black hole in the central molecular zone of our Galaxy. Astrophys. J.816, L7 (2016).
Oka, T., Hasegawa, T., Sato, F., Tsuboi, M. & Miyazaki, A. A hyperenergetic CO shell in the Galactic Center molecular cloud complex. Publ. Astron. Soc. Japan53, 787–791 (2001).
Maillard, J. P., Paumard, T., Stolovy, S. R. & Rigaut, F. The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared. Astron. Astrophys.423, 155–167 (2004).
Hatsukade, B. et al. AzTEC/ASTE 1.1-mm survey of the AKARI Deep Field South: source catalogue and number counts. Mon. Not. R. Astron. Soc411, 102–116 (2011).
Yamada, M. et al. Kinematics of ultra-high-velocity gas in the expanding molecular shell adjacent to the W44 supernova remnant. Astrophys. J.834, L3 (2017).
Takekawa, S., Oka, T., Iwata, Y., Tokuyama, S. & Nomura, M. Discovery of two small high-velocity compact clouds in the central 10 parsecs of the Galaxy. Astrophys. J. 843, L11 (2017).
24.
Agol, E., Kamionkowski, M., Koopmans, Léon, V. E., Blandford & Roger, D. Finding black holes with microlensing. Astrophys. J576, L131–L135 (2002).
This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.01234.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We thank the ALMA staff for the operation of the array and delivering the qualified data. We also thank S. Nakashima and M. Nobukawa for calculating the upper limit to the X-ray flux, and A. E. Higuchi for helping in ALMA data reduction with CASA. T.O. acknowledges support from JSPS Grant-in-Aid for Scientific Research (B) No. 15H03643.
Author informationAuthor information
Affiliations
Department of Physics, Institute of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
Tomoharu Oka
& Mariko Nomura
School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
T.O. directed the research, analysed the data and wrote the manuscript. S.Ts. and M.N. performed the model calculation. Y.I. and S.Ta. contributed to the analyses and discussion.
Competing interests
The authors declare no competing financial interests.
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners in accordance with our Privacy Policy. You can manage your preferences in 'Manage Cookies'.